
Examine1.4

Neil Carter

Examine1.4 ii

Copyright © 1996 Neil Carter

Examine1.4 iii

COLLABORATORS

TITLE :

Examine1.4

ACTION NAME DATE SIGNATURE

WRITTEN BY Neil Carter February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Examine1.4 iv

Contents

1 Examine1.4 1

1.1 main . 1

1.2 introduction . 1

1.3 requirements . 2

1.4 basicusage . 2

1.5 definingcustomformats . 4

1.6 scriptfileapplication . 6

1.7 history . 8

1.8 todo . 8

1.9 bugs . 9

1.10 author . 9

1.11 credits . 10

1.12 disclaimer . 10

Examine1.4 1 / 10

Chapter 1

Examine1.4

1.1 main

Examine V1.4

Written by Neil Carter

PUBLIC DOMAIN

Introduction

Requirements

Basic usage

Defining custom formats

Script file application

History

To do...

Bugs

Author

Credits

Disclaimer

1.2 introduction

INTRODUCTION

Examine V1.4 is a little program I wrote to help me write scripts and
identify unknown files. It is quite small, and very versatile (its format

Examine1.4 2 / 10

option is compatible with List).

Features:

:-) Uses, but does not absolutely require,
FileID.library
. With it, you

can easily identify most Amiga filetypes. Without it, Examine will
just tell you whether the file is binary or various forms of ASCII
text. FileID won’t be invoked unless a function (or format token)
which requires it is called, saving time and memory.

:-) Flexible format command. Most format tokens are exactly the same as
the standard List command, so if you know that, you know Examine.
Extra tokens allow you display various FileID values or do little
ASCII or hex dumps. If desired, you can choose a different format
for directories.

:-) Also capable of performing certain handy script functions. For
example, It can return WARN if the filename is that of a directory,
or if it’s an executable. It can return the FileID type as a
return code, allowing you to quickly confirm filetypes in your
scripts.

:-D It’s pretty good actually! I use it all the time. Source in Amiga E
is included, so you can have a good laugh at it.

1.3 requirements

REQUIREMENTS

Examine V1.4 requires:

· Kickstart 2.04 or better on some kind of Amiga.

· FileID.library version 2 or higher if you want file identification.
Version 7 can identify about 700 different types of file, including a
wide range of compressed data formats and music modules. A copy of
the version 7 FileID.library is included, without any supporting
documentation or extra catalogs. If you want to download the full
archive, it can be found on Aminet under util/libs/fidlib70.lha.

· A little AmigaDOS experience.

1.4 basicusage

BASIC USAGE

The command line template is:

FILENAME,BRIEF/S,FULL/S,Q=QUICK/S,NOFILEID/S,FORMAT/K,DFORMAT/K,
NUMBYTES/K/N,LIST/S,ALL/S,VERSION/S,ID/S,RETURNID/S,EXE=EXECUTABLE/S,

Examine1.4 3 / 10

DIR=DIRECTORY/S,WINDOW/S

The simplest way to use Examine is thus:

Examine <filename>

This returns:

"Filename: <filename>
Path: <path>
Size in bytes: <length>
Dir entry type: <type - file or dir>
FileID name: <fileid type name>

code: <fileid code number>
class: <fileid global file class text>"

Parameters and options:

FILENAME This gives a filename/filepath to the object you want to
examine. It can be a file or a directory. At the moment,
directory scanning and filename patterns are not supported.

BRIEF/S Gives the information in the format:

"Object <filename> is a <fileid type name>"

FULL/S Gives the information in the format:

"Filename: <filename>
Path: <path>
Comment: <comment>
Datestamp: <time> <day>, <date>
Size in bytes: <length>
Size in blocks: <blocks>
Protection: <protection bits>
Dir entry type: <type - file or dir>
Begins with: <hex dump> <ascii dump>
FileID name: <fileid type name>

code: <fileid code number>
class: <fileid global file class text>"

Q=QUICK/S Just returns the FileID type string.

NOFILEID/S Stops FileID from being opened. This is only necessary if
you wish to see whether a file is text or binary, as Examine
only opens FileID if it’s available and if it’s called for.

FORMAT/K Allows you to define a List-style format string.
See
Defining Custom Formats
for details.

DFORMAT/K Allows you to define a separate format string for use with
directories only (where entries such as "file size" have no
meaning). If you don’t specify it, FORMAT will be used
instead.

Examine1.4 4 / 10

NUMBYTES/K/N Specifies the number of bytes to be output by the %h and %o
tokens. The default is 8 bytes.

LIST/S Not implemented. When it is, it will allow Examine to scan
directories in a similar way to list, identifying files as
it goes.

ALL/S Not implemented. When it is, it will cause recursion into
subdirectories when in LIST mode.

VERSION/S Not implemented. If I ever do implement it, :-) it will
do a Version-style version string. It’s the same as the %v
token. That isn’t implemented, either.

ID/S Returns only the FileID code number.

RETURNID/S When this switch is set, the return code ($RC) set by
Examine will be the FileID code number. This can be used
in scripts to identify filetypes before processing files.

EXE= When this switch is set, Examine will return WARN ($RC=5)
EXECUTABLE/S if the file is an executable. This does not require

FileID.library.

DIR= The same as the above, except it returns WARN if the
DIRECTORY/S filename refers to a directory.

WINDOW/S Causes Examine to display its output in a Requester instead
of in the shell. It’s not very good if (like me) you have
a proportional screen font, as it’s hard to tabulate the
data.

1.5 definingcustomformats

DEFINING CUSTOM FORMATS

These are the currently supported format tokens:

* -------------Also present in List.
------------Causes FileID to be loaded.
+ -----------Unused in this version.

* %a Protection bits. These are shown as "hsparwed", where:

d Delete enabled
e Executable
w Write enabled
r Read enabled
a Archived
p Pure (unlike this program :-)
s Script
h Unused - supposedly "hidden"

Bits are shown as the letter above if they are on, or as a

Examine1.4 5 / 10

dash or they’re off.

* %b Size in blocks.

* %c Comment. If there isn’t one, "none" is returned.

* %d The file’s date. Just the date, not the time or weekday.

%e Directory entry type (ie. file or directory)

* %f Full (absolute) path

%g FileID global file class bits (sfgmiepx). The bits mean:

x Executable
p Packed (PowerPacked, for example)
e Encrypted (might be password protected)
i IFF (any kind of IFF file)
m Music (can be unreliable!)
g Graphic image
f Formatted text
s Script

Read the documentation on FileID to find out exactly what
these terms mean. They’re quite broad terms, and often
take in things you wouldn’t expect!

%h First few bytes hex dump. The number of bytes depends on
the NUMBYTES/K/N keyword.

%i FileID code number.

* %k Disk key.

* %l Size in bytes.

+ %m Unused.

* %n Filename, as specified by the user.

%o First few bytes text dump. Again, the NUMBYTES/K/N keyword
controls the number of bytes displayed.

* %p Path as supplied.

+ %q Unused.

%r FileID global file class text. This token will return a
string in the following format:

(Script)(Text)(Graphics)(Music)(IFF)(Encrypted)...
(Packed)(Executable)

Obviously, only the relevant words will appear. If the file
type has no class definition, the word (None) will appear.

%s FileID type name string.

Examine1.4 6 / 10

* %t Time, taken from the file’s datestamp.

+ %u Unused.

+ %v Not implemented. When (if) it is, it will scan the file for
a version string beginning with "$VER:" and will return the
version number (just the number, probably).

* %w The weekday from the file’s datestamp.

+ %x Unused.

+ %y Unused.

%z This token returns either "a" or "an", depending on the
first letter of the %s token. This is present purely for
fussy gits like me who don’t like seeing strings such as:

"Object Bobbins.32C" is a IFF picture/brush"
^^^

Use this instead:

"Object %n is %z %s"

%% Just prints a real "%" sign. In case you want one. :-)

*N Inserts a linefeed into your format text. This is a
standard AmigaDOS token, so you can use it in other
programs.

*" Inserts a double quote into your format text. Ditto.

The tokens are case sensitive.

Note that it doesn’t make any sense to use certain tokens when the examined
object is a directory. Tokens such as %l (length in bytes) will just return
"N/A" (not applicable). If this isn’t appropriate, you can use the
DFORMAT/K keyword to specify a different format for directories.

You can also use the paragraph sign "¶" instead of "%" if you want (on my
keyboard, it’s <alt-p>). This is an attempt to avoid clashes on the command
line when trying to pipe its output into another command which uses similar
tokens, with the backtick "‘" symbol.

Incidentally, I notice that there’s a new official version of List floating
around Aminet, which has extra tokens for dealing with the protection bits
etc. of multi-user filesystems. Naturally, those bits clash with mine, :-(
so I might change them to capital letters sometime.

1.6 scriptfileapplication

SCRIPT FILE APPLICATION

How to identify an LHA archive before unarchiving it:

Examine1.4 7 / 10

.key FILE/A

.bra {

.ket }
;Setting parameter brackets to "{}" is just a personal perversion.
;Don’t forget that the ".key" instruction must be on the first line!

;Here, Examine is run in BRIEF mode so it puts just the FileID string
;in a global ENV variable. It also uses RETURNID to set the return
;code to the FileID code number. That number for an LHA archive is
;"71", so we can check for that.

Examine >ENV:ExLhaMessage{$$} "{FILE}" BRIEF RETURNID

;Check that the file is an LHA archive.

If $RC EQ 71
;File IS an LHA archive, so we process it.
LHA x "{FILE}"

Else
;File was something else. Complain to the user!
Echo "File was a $ExLhaMessage"

EndIf

;Clean up....
UnSetEnv ExLhaMessage{$$}

How to check if a filename is a directory:

.key FILE/A

.bra {

.ket }

;The directory keyword causes Examine to return WARN if the filename
;refers to a directory. Examine will try to display its usual
;output, so you should redirect it to NIL:.

Examine >NIL: "{FILE}" DIRECTORY

If WARN
Echo "It’s a directory"

Else
Echo "It’s a file"

EndIf

How to return an appropriate string depending on the filetype:

Examine >ENV:ExamineMessage{$$} FORMAT "File type *"%s*" (%l bytes)"
... DFORMAT "Directory"

Returns:

File type "unknown executable file" (39206 bytes)

...or...

Directory

Examine1.4 8 / 10

This is useful, as directories obviously have no file size. If you were to
call the token "%l" on a directory, you would get the string "N/A" instead.

1.7 history

HISTORY

Version 1.0 Basically a rip-off of the original FileID.library example
code. It didn’t really do anything special, but it was the
first serious program I wrote in Amiga E, so I was quite
proud of it!

Version 1.1, I’m not sure what happened to these versions! :-) I suffer
1.2 from "version number bumping syndrome", so these versions

probably evolved into V1.3.

Version 1.3 Supported output in various different formats. The code was
generally tidied up and some simple (potential) bugs were
removed.

Version 1.4 Completely re-wrote the engine of the program. As I was
adding custom output formatting, I though I might as well
strip out the original display routines and just do
everything through the format parsing routine. Much
simpler! In addition to its own functions, Examine can
now do most things that List can do, except for
directory scanning.

1.8 todo

TO DO...

I would like to add the following features at some point, but please bear
with me; I’m a very slow programmer.

· Directory scanning and recursion via the LIST/S and ALL/S switches.
This will require a fairly hefty redesign of the program’s inner
workings. I don’t like the thought of it, but since this is the one
function which would be most useful to me, I probably will do it.

· Implement the VERSION/S switch and the %v token. I don’t really want
to do it, so unless you, the dedicated user, demand it of me, it will
most likely be removed!

· Add a means for tabulating data. Something like "%n[20]", for
example, allowing the following kind of format:

"%n[20]%l[10] %s"

...returns...

Examine1.4 9 / 10

"s:startup-sequence 1227 pure ASCII text file"

This is essential if I allow directory scanning (otherwise the
output’ll be all over the place!), so this seems likely to be added.

· Maybe add my own requester so I can have tabulated data when the
WINDOW/S switch is used. It looks really messy at the moment.

· Hmm... dunno. Suggestions are encouraged!

1.9 bugs

BUGS

There are some. :-)

Firstly, Examine is currently not pure. As such you should probably not
make it resident - since it’s supposed to be used in scripts, the chances of
something causing it to be executed twice simultaneously are pretty high. It
will probably crash if this happens. I’m not quite sure why, though.
This’ll get fixed when I add directory scanning.

Secondly, very rarely, I’ve seen it crash for no reason at all. It’s
difficult to point the finger at anything in particular, as these crashes
could just as easily be caused indirectly by something else I’m testing
while it’s running. It could equally be FileID itself. Such crashes are
extremely rare, though.

I don’t have an MMU, so I can’t test for Enforcer or Mungwall hits. Any
volunteers? ;-)

1.10 author

AUTHOR

Hi.

I’m Neil Carter, a freelance computer graphic artist and sometime computer
programmer, living in the nethers of London. I’ve just graduated from a
three year Interior Design BA at Kingston University, and I’m searching for
computer modelling and visualisation work relating to architecture.

I’m currently working on several programming projects in my free time,
including a ClassAction type program using FileID, and an enormous space
combat strategy game thing which I might finish somewhere around the end of
the century at this rate. I write in Amiga E, 68000 assembly and
occasionally AMOS.

My machine is an old revision 6 A500, with a Kickstart 2.05 (!) ROM. It
has 5 megs of RAM, a 50 meg hard drive ;-) and two floppy drives. Well,
I like it! :-P

Examine1.4 10 / 10

I can be contacted at:

n.carter@kingston.ac.uk (Up until about June/July 1997, but
maybe longer.)

Neil Carter (Parents’ address - be nice!)
1 Langer Close
Lincoln
LN6 0SX
England

Bug reports, comments, etc. are welcome. Flames >NIL: please!

1.11 credits

CREDITS

Thanks a lot to Bloodstone of Syndicate, the author of FileID.library.
Nice work!

1.12 disclaimer

DISCLAIMER

You use this program entirely at your own risk. If it blows up on you, I
will not accept any kind of responsibility.

That said, I trust the thing enough to use it every day in several vital
scripts on my Amiga. However, you should read the

Bugs
section.

	Examine1.4
	main
	introduction
	requirements
	basicusage
	definingcustomformats
	scriptfileapplication
	history
	todo
	bugs
	author
	credits
	disclaimer

